The functions rlse_lap, rlre_lap, rlhce_lap, and rlae_lap provide the relative information loss based on the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the truncated Laplace distribution, \(p\) and \(\delta\).
Arguments
alpha
Location parameter of the Laplace distribution (\(\alpha\in\left(-\infty,+\infty\right)\)).
beta
The strictly positive scale parameter of the Laplace distribution (\(\beta > 0\)).
p
The truncation time \((p>0)\).
delta
The strictly positive parameter (\(\delta > 0\)) and (\(\delta \ne 1\)).
Author
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
References
Awad, A. M., & Alawneh, A. J. (1987). Application of entropy to a life-time model. IMA Journal of Mathematical Control and Information, 4(2), 143-148.
Cordeiro, G. M., & Lemonte, A. J. (2011). The beta Laplace distribution. Statistics & Probability Letters, 81(8), 973-982.